Dynamic changes of SETD2, a histone H3K36 methyltransferase, in porcine oocytes, IVF and SCNT embryos

نویسندگان

  • Yun Fei Diao
  • Tao Lin
  • Xiaoxia Li
  • Reza K Oqani
  • Jae Eun Lee
  • So Yeon Kim
  • Dong Il Jin
چکیده

SETD2 (SET domain containing protein 2) acts as a histone H3 lysine 36 (H3K36)-specific methyltransferase and may play important roles in active gene transcription in human cells. However, its expression and role in porcine oocytes and preimplantation embryos are not well understood. Here, we used immunofluorescence and laser scanning confocal microscopy to examine SETD2 expression in porcine fetal fibroblasts, oocytes, and preimplantation embryos derived from in vitro fertilization (IVF), parthenogenetic activation (PA), and somatic cell nuclear transfer (SCNT). In porcine fetal fibroblasts, SETD2 expression was detected in interphase cells, but not in M (mitotic)-phase cells. The SETD2 signal was observed in non-surrounded nucleolus (NSN)-stage oocytes, but not in surrounded nucleolus (SN)-, metaphase I (MI)-, or metaphase II (MII)-stage oocytes. The SETD2 signal was detectable in sperm, and undetectable immediately after fertilization, detectable at the 2-cell stage, and peaked at the 4-cell stage of IVF embryos in which porcine embryonic genome is activated. Similar to the pattern found in IVF embryos, the SETD2 signal was absent from PA embryos at the 1-cell stage, but it was detected at the 2-cell stage and thereafter maintained to the blastocyst stage. Interestingly, unlike the IVF and PA embryos, the SETD2 signal was detected throughout the development of SCNT embryos, including at the 1-cell stage. These data suggest that SETD2 may be functional for embryonic gene transcription in porcine preimplantation embryos. It is further speculated that the aberrant expression of SETD2 at the 1-cell stage of porcine SCNT embryos may be a factor in the low efficiency of cloning in pig.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in Histone H3 Lysine 36 Methylation in Porcine Oocytes and Preimplantation Embryos

Histone H3 lysine 36 (H3K36) methylation is known to be associated with transcriptionally active genes, and is considered a genomic marker of active loci. To investigate the changes in H3K36 methylation in pig, we determined the mono-, di-, and tri-methylations of H3K36 (H3K36me1, H3K36me2 and H3K36me3, respectively) in porcine fetal fibroblasts, oocytes and preimplantation embryos by immunocyt...

متن کامل

Genome-Wide Dynamic Profiling of Histone Methylation during Nuclear Transfer-Mediated Porcine Somatic Cell Reprogramming.

The low full-term developmental efficiency of porcine somatic cell nuclear transfer (SCNT) embryos is mainly attributed to imperfect epigenetic reprogramming in the early embryos. However, dynamic expression patterns of histone methylation involved in epigenetic reprogramming progression during porcine SCNT embryo early development remain to be unknown. In this study, we characterized and compa...

متن کامل

Histone H3 lysine 27 trimethylation acts as an epigenetic barrier in porcine nuclear reprogramming.

Aberrant epigenetic reprogramming is the main obstacle to the development of somatic cell nuclear transfer (SCNT) embryos and the generation of induced pluripotent stem (iPS) cells, which results in the low reprogramming efficiencies of SCNT and iPS. Histone H3 lysine 27 trimethylation (H3K27me3), as a repressive epigenetic mark, plays important roles in mammalian development and iPS induction....

متن کامل

O-12: Study of Expression of DevelopmentalGenes in SCNT Cloned Embryos

(SCNT) embryos of buffaloes. 2. To study gene expression profile of important developmental genes at different stages of SCNT cloned embryo. 3. To study epigenetic reprogramming during early developments of SCNT embryos Materials and Methods: Expression analysis of developmental genes was done in different (ovarian granulose and cumulus and skin fibroblasts) donor cells; in vitro maturing oocyt...

متن کامل

O-7: Improved In Vitro Development of Cloned Bovine Embryos Using S-Adenosylhomocysteine,A Non-Toxic Epigenetic

Background: Development of cloned bovine embryos. Materials and Methods: Oocytes collection,oocyte denudation, oocyte enucleation, nuclear transfer, electrofusion, reconstructed embryo activation, culture of reconstructed and IVF embryo,and treatment with SAH post fusion interval Treatment of reconstructed embryos with TSA for 12 hours after activation, preparation of somatic donor cells, donor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018